# Therapeutic Hypothermia and Pharmacologic Considerations

Genelle Butz, PharmD
Director of Pharmacy
CarolinaEast Medical Center
August 6, 2013

### Disclosures

#### **Disclosure Statement:**

I have no financial or personal relationships with the commercial entities (or their competitors) that may be referenced in this presentation.

### Objectives

- Review medication metabolism and clearance
- Describe effects that hypothermia has on drug pharmacodynamics/kinetics
- Discuss complications with therapeutic hypothermia and medication management options

### ADME

ADME



Distribution



Metabolism



Absorption



Elimination

### Metabolism

- Medication metabolism during hypothermia
  - Kinetic properties of most enzyme systems are temperature dependent
  - Less medication binding to hepatic enzymes
  - Decreased affinity of medication for specific enzyme

### P450 Metabolized Drugs

| 4 | A • •               |
|---|---------------------|
| _ | $\Lambda$ mindarona |
|   | Amiodarone          |
|   |                     |

• Fentanyl

Verapamil

**Lidocaine** 

Morphine

Codeine

Metoprolol

Phenytoin

Macrolides

Digoxin

Carbamazepine

Fluoroquinolones

Diltiazem

Pantoprazole

Amlodipine

Midazolam

**♦** Famotidine

Methylprednisolone

Propofol

Vecuronium

Prednisone

### Elimination

- Several ways the body eliminates medications:
  - Hepatic elimination
  - Renal clearance
  - Biliary clearance





### Hypothermia on Elimination

- Decrease in hepatic blood flow
- Decrease in biliary flow
- Renal Elimination?
  - Dependent on kidney blood flow and glomerular filtration rate
  - Passive transport so may not be affected in hypothermia

### Drug Response to Hypothermia

#### Hypothermia



Reduced Metabolism and Elimination of Drugs



**Altered Drug Response** 





Reduced Doses
Increased Frequency
Monitoring for Toxicity and Efficacy

## Complications Associated with Therapeutic Hypothermia

- Shivering
- Sedation
- Cardiovascular Effects
- Electrolyte disorders
- ♦ Hyperglycemia
- Infection



### Core Body Temperature Change Response



Sweating

Vasodilation

37.5°C to 36.5°C Thermoneutroal Zone

Vasoconstriction

Shivering

### Shivering

- Natural response to reduction in body temperature
- ♦ Shivering threshold between 36°C and 33.5°C
- ♦ Why we want to counteract shivering:
  - ♦ 600% increase in metabolic heat production
  - Increased metabolic metabolism
  - Increased oxygen demand/consumption
  - Increased stress response

### Medications Used to Combat Shivering

| Medication                  | Effect on shivering |
|-----------------------------|---------------------|
| Paralytics                  | ++++                |
| Meperidine                  | ++++                |
| Opiates (fentanyl/Morphine) | +++                 |
| Propofol                    | +++                 |
| Clonidine                   | +++                 |
| Benzodiazapines             | ++                  |
| Magnesium                   | ++                  |

### Paralytics (pro/con)

#### **Pros**

- Effective
- Does not cause hypotension
- Leads to more rapid cooling

#### Cons

- Masks insufficient sedation
- Masks seizure activity
- Polyneuromyopathy in prolonged paralysis

### Paralytics Used in Hypothermia

| Medication | Onset   | Duration of Action (DOA) | Comments                                                                                         |
|------------|---------|--------------------------|--------------------------------------------------------------------------------------------------|
| Vecuronium | 180 sec | 33 min                   | <ul> <li>Metabolized by P450 enzymes</li> <li>3-fold increase in DOA with hypothermia</li> </ul> |
| Rocuronium | 75 sec  | 33 min                   | <ul> <li>Primarily eliminated in bile</li> <li>2-fold decrease in systemic clearance</li> </ul>  |
| Atracurium | 110 sec | 43 min                   | <ul> <li>Hofman elimination</li> <li>1.5-fold increase in</li> <li>DOA</li> </ul>                |

#### Meperidine:

- **▶** Benefits:
  - Opiate with best data on decreasing shivering threshold
- **♦** Cons:
  - ♦ Large doses needed when used as monotherapy
  - Metabolized to active metabolite (normeperidine)
  - ▲ Adverse Effects:
    - Hypotension
    - Myoclonus
    - Seizure activity

#### Fentanyl:

- Potent opiate with quick onset
- Mild hypotensive response
- Metabolism by P450 enzymes which decreases clearance in hypothermia

#### **Morphine:**

- ♦ Histamine release/vasodilation/hypotension
- Decreased potency/response in hypothermia

#### **Propofol:**

#### **▶** Benefits:

- Fast onset/offset
- Decreases cerebral metabolic oxygen consumption
- Decreases shivering threshold

#### **♦** Cons:

- Causes hypotension and bradycardia
- Metabolized through hepatic P450 and glucuronidation
- ♦ Hypothermia shown to increase propofol concentration ~30%



#### Alpha<sub>2</sub> Agonists (dexmedetomidine and clonidine):

- ♦ Alpha<sub>2</sub> adrenergic actions on central thermoregulatory centers
- Benefits with dexmedetomidine:
  - Fast acting sedative with analgesic properties
  - Decreases both vasoconstriction and shivering thresholds
- Cons:
  - Hypotension and bradycardia

#### Magnesium:

- Benefits:
  - Combats vasoconstriction
  - May have neuroprotective properties
  - Shown to decrease time to target temperature and patient comfort

#### Cons:

- No sedative or analgesic properties
- ♦ Little benefit when used as sole agent

#### **Combination Therapy:**

- Utilizes different antishivering mechanisms of action
- Maximize effect on shivering threshold
- Decrease doses = decrease adverse effects
- Buspirone reduces shivering



#### Non-Pharmacologic Methods:

- Surface Counterwarming
  - Warming of the face, hands, feet



### Shivering Conclusion

- Common physiologic response to hypothermia
- Data showing shivering can be controlled with deep sedation
- Paralytic use may be first line option during induction phase and last line option during maintenance phase
- Combination therapy

### Sedation

- ♦ All patients need to receive some form of sedation
- Minimizes anxiety/discomfort and stress response
- Aids in the cooling process
- ♦ Lower doses, rates, and/or longer duration between doses



### Electrolyte Disorders

- Magnesium, Potassium, Calcium, and Phosphorus
- "Cold-diuresis"
- **♦** Intracellular shift
- Magnesium prevents further brain injury
- ♦ Low Magnesium and Potassium = dysrhythmias

### Electrolyte Management

- Pre-emptive magnesium supplementation
- ▶ Initiate potassium replacement if level < 4 mEq/L
- Frequent monitoring during therapeutic hypothermia
- Consider holding during rewarming phase

### Cardiovascular Effects

- ♦ Initial tachycardia then bradycardia
- ♦ Arrhythmias rare at temperature >30°C
- Management of arrhythmias
  - Fluid balance
  - Electrolyte balance (Magnesium and Potassium)
  - Less responsive to anti-arrhythmics



### Hyperglycemia

- ♦ Decrease insulin sensitivity AND secretion
- Increased gluconeogenesis and glycogenolysis
- Hyperglycemia associated with negative effect on neurologic outcomes
- Insulin drip for management
- ♦ Insulin sensitivity may increase rapidly during rewarming

### Infection

- ♦ Hypothermia induced supression:
  - Masking fever

  - Neutrophil and macrophage activity
  - Secretion of proinflammatory cytokines
- Most common infections:
  - Wound & pneumonia (aspiration)
- Consider prophylactic antibiotics



### Pharmacokinetic Summary

- Metabolism through CYP enzymes reduced during therapeutic hypothermia
- Clearance of medications and metabolites decreases during hypothermia
- Medication dosing not specific but may require lower doses
- Increased frequency between doses to avoid side effects or toxicity

### Summary of Complications

- Utilize combination therapy to manage shivering response
- Proactive/aggressive management of electrolyte and glycemic imbalances during induction/maintenance
- Prophylactic antibiotic therapy if infection suspected
- Careful and frequent monitoring
- Management to change with re-warming phase!!

### Questions

