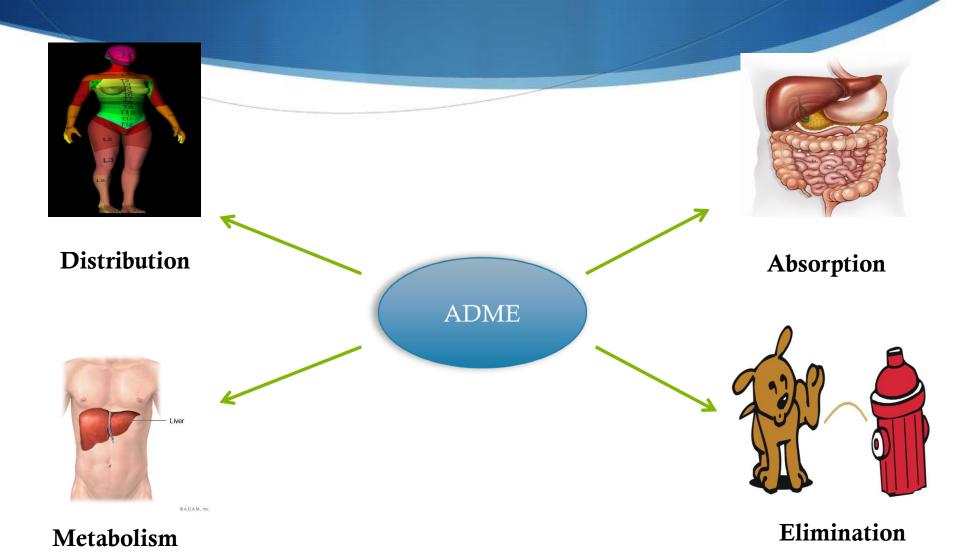
Therapeutic Hypothermia and Pharmacologic Considerations

Peter M. DeLaney, PharmD Clinical Pharmacy Specialist – Emergency Medicine Carolinas Medical Center NorthEast May 1, 2013


Disclosure Statement:

I have no financial or personal relationships with the commercial entities (or their competitors) that may be referenced in this presentation.

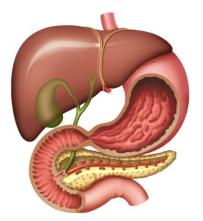
- Review medication metabolism and clearance
- Describe effects that hypothermia has on drug pharmacodynamics/kinetics
- Discuss complications with therapeutic hypothermia and medication management options

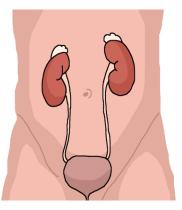
ADME

- CYP450 enzymes activate and detox many medications
- Medication metabolism during hypothermia
 - Kinetic properties of most enzyme systems are temperature dependent
 - Less medication binding to hepatic enzymes
 - Decreased affinity of medication for specific enzyme

P450 Metabolized Drugs

- Amiodarone
- Lidocaine
- Metoprolol
- Digoxin
- Diltiazem
- Midazolam
- Propofol


- Fentanyl
- Morphine
- Phenytoin
- Carbamazepine
- Pantoprazole
- Famotidine
- Vecuronium


- Verapamil
- Codeine
- Macrolides
- Fluoroquinolones
- Amlodipine
- Methylprednisolone
- Prednisone

Elimination

• Several ways the body eliminates medications:

- Hepatic elimination
- Renal clearance
- Biliary clearance

Hypothermia on Elimination

- Decrease in hepatic blood flow
- Decrease in biliary flow
- Renal Elimination?
 - Dependent on kidney blood flow and glomerular filtration rate
 - Passive transport so may not be affected in hypothermia

Drug Response to Hypothermia

Hypothermia

Reduced Metabolism and Elimination of Drugs

Altered Drug Response



Reduced Doses Increased Frequency Monitoring for Toxicity and Efficacy

Complications Associated with Therapeutic Hypothermia

- Shivering
- Sedation
- Cardiovascular Effects
- Electrolyte disorders
- Hyperglycemia
- Infection

Core Body Temperature Change Response

Sweating

Vasodilation

37.5°C to 36.5°C Thermoneutroal Zone

Vasoconstriction

Shivering

Shivering

- Natural response to reduction in body temperature
- Shivering threshold between 36°C and 33.5°C
- Why we want to counteract shivering:
 - 600% increase in metabolic heat production
 - Increased metabolic metabolism
 - Increased oxygen demand/consumption
 - Increased stress response

Medications Used to Combat Shivering

Medication	Effect on shivering
Paralytics	+++++
Meperidine	++++
Opiates (fentanyl/Morphine)	+++
Propofol	+++
Clonidine	+++
Benzodiazapines	++
Magnesium	++

Paralytics (pro/con)

- Effective
- Does not cause hypotension
- Leads to more rapid cooling

- Cons
- Masks insufficient sedation
- Masks seizure activity
- Polyneuromyopathy in prolonged paralysis

Paralytics Used in Hypothermia

Medication	Onset	Duration of Action (DOA)	Comments
Vecuronium	180 sec	33 min	 Metabolized by P450 enzymes 3-fold increase in DOA with hypothermia
Rocuronium	75 sec	33 min	 Primarily eliminated in bile 2-fold decrease in systemic clearance
Atracurium	110 sec	43 min	 Hofman elimination 1.5-fold increase in DOA

Weant KA, et al. Pharmacotherapy 2010;30(8):830-841 Tortorici MA, et al. Crit Care Med 2007;35:2196-2204

Meperidine:

- Benefits:
 - Opiate with best data on decreasing shivering threshold
- ▲ <u>Cons:</u>
 - Large doses needed when used as monotherapy
 - Metabolized to active metabolite (normeperidine)
 - Adverse Effects:
 - Hypotension
 - Myoclonus
 - Seizure activity

Fentanyl:

- Potent opiate with quick onset
- Mild hypotensive response
- Metabolism by P450 enzymes which decreases clearance in hypothermia

Morphine:

- Histamine release/vasodilation/hypotension
- Decreased potency/response in hypothermia

Propofol:

- Benefits:
 - Fast onset/offset
 - Decreases cerebral metabolic oxygen consumption
 - Decreases shivering threshold
- Cons:
 - Causes hypotension and bradycardia
 - Metabolized through hepatic P450 and glucuronidation
 - ♦ Hypothermia shown to increase propofol concentration ~30%

<u>Alpha₂ Agonists (dexmedetomidine and clonidine):</u>

• Alpha₂ adrenergic actions on central thermoregulatory centers

• <u>Benefits with dexmedetomidine:</u>

- Fast acting sedative with analgesic properties
- Decreases both vasoconstriction and shivering thresholds
- Cons:
 - Hypotension and bradycardia

Magnesium:

- Benefits:
 - Combats vasoconstriction
 - May have neuroprotective properties
 - Shown to decrease time to target temperature and patient comfort

▲ <u>Cons:</u>

- No sedative or analgesic properties
- Little benefit when used as sole agent

Combination Therapy:

- Utilizes different antishivering mechanisms of action
- Maximize effect on shivering threshold
- Decrease doses = decrease adverse effects

Non-Pharmacologic Methods:

- Surface Counterwarming
 - Warming of the face, hands, feet

- Common physiologic response to hypothermia
- Data showing shivering can be controlled with deep sedation
- Paralytic use may be first line option during induction phase and last line option during maintenance phase
- Combination therapy

- All patients need to receive some form of sedation
- Minimizes anxiety/discomfort and stress response
- Aids in the cooling process
- Lower doses, rates, and/or longer duration between doses

Wiggins BS, Sanoski CA. American Society of Health-System Pharmacists 2012 edition

Electrolyte Disorders

- Magnesium, Potassium, Calcium, and Phosphorus
- "Cold-diuresis"
- Intracellular shift
- Magnesium prevents further brain injury
- Low Magnesium and Potassium = dysrhythmias

Electrolyte Management

- Pre-emptive magnesium supplementation
- Initiate potassium replacement if level < 4 mEq/L
- Frequent monitoring during therapeutic hypothermia
- Consider holding during rewarming phase

Cardiovascular Effects

- Initial tachycardia then bradycardia
- Arrhythmias rare at temperature >30°C
- Management of arrhythmias
 - Fluid balance
 - Electrolyte balance (Magnesium and Potassium)
 - Less responsive to anti-arrhythmics



- Decrease insulin sensitivity AND secretion
- Increased gluconeogenesis and glycogenolysis
- Hyperglycemia associated with negative effect on neurologic outcomes
- Insulin drip for management
- Insulin sensitivity may increase rapidly during rewarming

Infection

- Hypothermia induced supression:
 - Masking fever
 - Immune system
 - Neutrophil and macrophage activity
 - Secretion of proinflammatory cytokines
- Most common infections:
 - Wound & pneumonia (aspiration)
- Consider prophylactic antibiotics

Lee R, Asare K. Am J health-Syst Pharm. 2010;67:1229-37 Polderman KH, Ingeborg H. Crit Care Med 2009;37:1101-1120 Arpino PA, Greer DM. Pharmacotherapy 2008;28(1):102-111

- Metabolism through CYP enzymes reduced during therapeutic hypothermia
- Clearance of medications and metabolites decreases during hypothermia
- Medication dosing not specific but may require lower doses
- Increased frequency between doses to avoid side effects or toxicity

- Utilize combination therapy to manage shivering response
- Proactive/aggressive management of electrolyte and glycemic imbalances during induction/maintenance
- Prophylactic antibiotic therapy if infection suspected
- Careful and frequent monitoring
- Management to change with re-warming phase!!

Questions

