ECG Recognition of Myocardial Ischemia & Infarction

J. Lee Garvey, MD Department of Emergency Medicine Carolinas Medical Center

Objectives

 To detect myocardial ischemia & infarction on an electrocardiogram
 To define the areas of the heart to which the twelve standard ECG leads correspond
 To correlate coronary anatomy with areas of ischemia & infarction

Acute Myocardial Injury

Acute Myocardial Injury

Acute Myocardial Injury

The electrocardiogram (ECG): the electrical activity of the heart recorded at the body surface

ECG Basics

Anatomy of the heart: positioning in chest

Coronary Anatomy

Coronary Anatomy

There are two coronary arteries which supply the heart with blood

Coronary Anatomy LCA

Figure 4: Schematic diagram of the left	Figure 5: Schematic diagram of the left
coronary artery viewed from a right anterior oblique orientation.	coronary artery viewed from a left anterior oblique orientation.

Coronary Anatomy

- The LEFT coronary artery has 2 major branches:
 - <u>Left Anterior Descending</u> (LAD)- supplies
 Anterior wall of the ventricles
 & septum
 - <u>Circumflex branch</u>- supplies
 Lateral wall of the left ventricle
 & atrium

Coronary Anatomy RCA

Figure 6: Schematic diagram of the right coronary artery viewed from a right anterior oblique orientation.

Figure 7: Schematic diagram of the right coronary artery viewed from a left anterior oblique orientation. **Coronary Anatomy RIGHT coronary artery (RCA)**

The RCA supplies:
 Right atrium
 SA & AV nodes
 Posterior regions of ventricles

Coronary Anatomy RCA

- The EKG essentially a voltmeter.
 Measures voltage electrical potential
 - between two points.
- Records this voltage over time.

The EKG – 12 voltmeters. Upward deflections move towards the (+) electrode. Downward deflections move toward the (-) electrode.

Chest Leads
Exploring leads (V1 – V6) are (+)
Reference lead (-) is Wilson's Central Terminus

The EKG: electrical activity of atria and ventricles Depolarization and repolarization

The EKG: Standardized grid - small box ■40 mSec ■100 uV – Large box ■200 mSec ■500 uV

The standard EKG is composed of 12 Leads

Six limb leads: I, II, III, aVR, aVL, aVF

Six chest leads: V1, V2, V3, V4, V5, V6

For a STANDARD RESTING 12 LEAD Extremity leads placed: Beyond the tip of the clavicles (arm leads) Beyond the inguinal ligament (leg leads)

Monitoring lead placement – more centrally on torso (Mason- Likar lead positions)

Chest Leads: V1 – V6

Palpate chest to locate landmarks

Small lead position changes can lead to changes in interpretation.

Chest Leads: V1 – V6

V1 – 4^{th} IC space, R of sternum V2 – 4^{th} IC space, L of sternum V3 – between V2 and V4 V4 – 5^{th} IC space, Mid clav line V5- Lat to V4, Anterior Ax line V6 – Lat to V4 and V5, Mid Ax

On a standard EKG mounting, the six chest leads and six limb leads are typically arrayed in columns:

Localization of MI

Area of Infarction Anterior wall *Anteroseptal Lateral wall Inferior wall **Right ventricle Posterior wall**

Leads Involved <u>V1, V2, V3, V4</u> V1, V2 I, AVL, V5, V6 II, III, AVF **V4 R** V7, V8, V9 + Tall R & ST \downarrow V1, V2

Limb Leads

To obtain the 6 limb leads, electrodes are placed on the right arm, the left arm & the left leg forming a triangle

Bipolar Limb Leads

Leads I, II, III are formed by a pair of electrodes

Each records from a different perspective: going away from the (-), and lead toward (+) lead

Bipolar Limb Leads

Leads I, II, III are formed by a pair of electrodes

Figure 2.2. A. The equiangular (60-degree) Einthoven triangle formed by leads I. II. and III is

Bipolar Limb Leads

Leads I, II, III are formed by a pair of electrodes

Figure 2.2. A. The equiangular (60-degree) Einthoven triangle formed by leads L. II. and III is

"Augmented" limb leads

Are unipolar limb leads, stressing the importance of the (+) electrode

AVR- *Right* arm positive
AVL- *Left* arm positive
AVF- *Foot* (left) positive

"Augmented Limb leads"

Frontal Plane leads

Limb Leads

Leads I and AVL view the: high lateral wall of the heart

Leads II, III & AVF view the: inferior wall of the heart

Limb Leads

Lead AVR looks "away" from the heart

Therefore the "P", "QRS" & "T waves" should be inverted

If they are upright in AVR, then the electrodes are likely misplaced.

ECG - Chest Leads

Chest Leads: V1 – V6

Each lead gives a different perspective of the heart... sees the electrical activity from a slightly different view.

Chest leads

Figure 0.7 Figure 1.0D is shown with the orientation of the air prepardial loads indicated hu

Chest Leads

The ECG tracing from V1-V6 shows gradual changes in all the waves as the position of each lead changes

Right sided chest lead: V4 R

Looks at right ventricle

5th ICS, Rt. midclavicular line

Midclavicular line

Left posterior leads: V7, V8, V9

Look at the posterior wall

V7- 5th ICS, post axillary line
 V8- 5th ICS, midscapular line
 V9- 5th ICS, 2cm left of vert column

Myocardial Ischemia & Infarction

ECG: Ischemia / Injury

Identify the most SEVERE abnormality – this is the 'name' injury: eg: Anterior STEMI

Look for 'RECIPROCAL' findings – typically ST depression or T wave inversion in the setting of ST elevation. **Myocardial Infarction** Problems with diagnosis

History: symptoms & signs often vague

Enzyme markers: take time to detect

EKG: non-diagnostic in up to 60%

0.4 - 3% of patients are sent home with MI & up to 25% of these die!

Isoelectric point: somewhere in T-P interval
 Measure ST elevation : J point + 60 mSec

Initially see tall peaked T waves and ST segment elevation

	a VR	VI A	
			vs.
~^/~~~~~~/~~~~/~ 11			
n mangang		man frank	MANNA
	- Andre - A	,	

Localization of MI

Area of Infarction Anterior wall *Anteroseptal Lateral wall Inferior wall **Right ventricle Posterior wall**

Leads Involved <u>V1, V2, V3, V4</u> V1, V2 I, AVL, V5, V6 II, III, AVF **V4 R** V7, V8, V9 + Tall R & ST \downarrow V1, V2

Posterior wall infarction

If an Anterior wall MI is manifested by Q waves & ST segment elevation

Then a Posterior wall MI will appear just the opposite (R waves & ST depression)

Posterior wall infarction

In acute posterior infarctions, there is a large R wave with ST depression in: V1, V2 and / or V3

Myocardial Infarction Posterior wall MI

Note that the electrical activity of the anterior and posterior wall of the LV is in opposite directions

ST Segment Elevation

Not as easy as it sounds

Inconsistent interpretation

Interobserver and intraobserver

Up to 14% inconsistently classified

Many reasons for STE

29% of prehospital ECGs in CP pts have at least 100 uV of STE on 2 contiguous limb leads or 200 uV of STE on 2 contiguous precordial leads
But only 49% and 15% (limb/ precord) have AMI
Majority have LVH, LBBB, BER, or ventricular aneurysm

ST Segment Elevation

- How often are we right/ wrong in initiating reperfusion therapy?
 - 11% of lytic patients did not have AMI
 - 9 of 83 lytic treated pts exposed to risk of Rx
- If STE is minor, it is more difficult to definitively call, and leads to delay in Rx
 D2Drug < 30 min: ST Segment Sum 21.5 mm
 D2Drug > 30 min: ST Segment Sum 11.5

The ST Segment

- Myocardial Infarction/ Ischemia
- Ventricular aneurysm
- LVH
- LBBB
- Early repolarization/ normal variant
- Acute pericarditis
- Hyperkalemia
- Hypothermia
- Hypercalcemia
- Post cardioversion

- Usually mid-precordial leads
- Elevated J point (up to ~300 uV)
- ST usually concave
- Notching in downstroke of QRS
- Large symmetric T waves
- Relatively fixed pattern

- 1% of general population
- 13% of Chest Pain pts
- 23-48% of Cocaine CP pts
- All ages, races
- Mean age 39 yr (16-80)
- Rare in those > 70 (3%)

- Limb leads involved ~ 45% of cases
- "Isolated" BER in limb leads is VERY RARE
 - Think of other causes for STE

Source: Knoop KJ, Stack LB, Storrow AB, Thurman RJ: The Atlas of Emergency Medicine, 3rd Edition: http://www.accessmedicine.com

ems12lead.blogspot.com

ems12lead.blogspot.com

Discordant ST-elevation > 0.2 the depth of the S-wave in leads III and aVF

ems12lead.blogspot.com

The ST Segment

Left Ventricular Hypertrophy

- A number of different ECG criteria proposed
- Vary in sensitivity and specificity
- Easiest: Sokolow Lyon
 - R_{aVL} > 1.1 mV or
 - S_{V1} + (R_{V5} or R_{V6}) > 3.5 mV
 - Sensitivity 10 35%; Specificity 85%
- Repolarization abnormalities increase the assoc with anatomic LVH

Standard LVH

Expected findings in LVH:

- * STE discordant with QRS panels A and B
- * STD and T inversion discordant with QRS panels C and D

LVH with STE - AMI

Practice EKG's

www.ems1.com Tom Bouthillet

Questions??

LGarvey@carolinas.org